93448 VISOPLANAR SCHOTTKY TTL MEMORY 512×8-BIT PROGRAMMABLE READ ONLY MEMORY 0/077/ **DESCRIPTION** – The 93448 is a fully decoded 4096-bit field Programmable ROM organized 512 words by eight bits per word. The 93448 has 3-state outputs. The device is enabled when $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are LOW and CS₃ and CS₄ are HIGH. The 93448 is supplied with all bits stored as logic "1"s and may be programmed to logic "0"s by following the field programming procedure. - FULL MIL AND COMMERCIAL RANGES - FIELD PROGRAMMABLE - ORGANIZATION 512 WORDS X 8 BITS - 3-STATE OUTPUTS - FULLY DECODED ON-CHIP ADDRESS DECODER AND BUFFER - CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION - WIRED-OR CAPABILITY - STANDARD 24-PIN DUAL IN-LINE PACKAGE - NICHROME FUSE LINKS FOR HIGH RELIABILITY - REPLACES TWO 256 X 8 PROMs DOUBLE DENSITY WITH SAME SPACE AND POWER # PIN NAMES $\frac{A_0 - A_8}{CS_1, CS_2, CS_3, CS_4}$ $O_1 - O_8$ Address Inputs Chip Select Inputs Data Outputs Dual In-Line Package. 7-135 # FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY • 93448 #### ABSOLUTE MAXIMUM RATINGS Storage Temperature Temperature (Ambient) Under Bias V_{CC} Input Voltage Current into Output Terminal Output Voltages -65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to 4.0 V #### **GUARANTEED OPERATING RANGES** | PART NUMBERS | s | AMBIENT | | | |---------------|--------|---------|--------|-----------------| | TANT NOWIBERS | MIN | TYP | MAX | TEMPERATURE | | 93448XC- | 4.75 V | 5.0 V | 5.25 V | 0°C to +75°C | | 93448XM | 4.50 V | 5.0 V | 5.50 V | -55°C to +125°C | X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product. FUNCTIONAL DESCRIPTION — The 93448 is a bipolar field Programmable Read Only Memory (PROM) organized 512 words by eight bits per word. The 93448 has 3-state outputs which provide active <u>pull-ups</u> when enabled and high output impedance when disabled. Chip Select for both devices follows the logic equation: $\overline{\text{CS}}_1 \bullet \overline{\text{CS}}_2 \bullet \text{CS}_3 \bullet \text{CS}_4 = \text{CS}$; i.e., if $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are both active LOW and $\overline{\text{CS}}_3$ and $\overline{\text{CS}}_4$ are both active HIGH, all eight outputs are enabled; for any other condition all eight outputs are disabled. The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_0 through A_8 inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds. Programming (selectively opening nichrome fuse links) is accomplished by following the procedures in Chapter 6, page 6-14. DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise note. | | | LIMITS | | | | | | |------------------|--|--------|-----------------|--------------|----------|--|--| | SYMBOL | CHARACTERISTIC | MIN | TYP
(Note 1) | MAX | UNITS | CONDITIONS | | | v _{OL} | Output LOW Voltage | | 0.30 | 0.45 | V | V _{CC} = MIN, I _{OL} = 16 mA
A ₀ = +10.8 V, A ₁ - A ₈ = HIGH | | | v _{OH} | Output HIGH Voltage | 2.4 | | | V | V _{CC} = MIN, I _{OH} = -2.0 mA | | | l _{off} | Output Leakage Current for HIGH
Impedance State | | | 50
-50 | μΑ
μΑ | V _{OH} = 2.4 V
V _{OL} = 0.4 V 0°C to +75°C | | | l _{off} | Output Leakage Current for HIGH
Impedance State | | | 100
-50 | μΑ
μΑ | V _{OH} = 2.4 V
V _{OL} = 0.4 V -55°C to +125°C | | | v_{IH} | Input HIGH Voltage | 2.0 | | | V | Guaranteed Input HIGH Voltage for All Input | | | V _{IL} | Input LOW Voltage | | | 0.8 | V | Guaranteed Input LOW Voltage for All Inputs | | | lF | Input LOW Current IFA (Address Inputs) IFCS (Chip Select Inputs) | | -160
-160 | -250
-250 | μA
μA | V _{CC} = MAX, V _F = 0.45 V | | | I _R | Input HIGH Current IRA (Address Inputs) IRCS (Chip Select Input) | | | 40
40 | μA
μA | V _{CC} = MAX, V _R = 2.4 V | | | lcc | Power Supply Current | | 130 | 175 | mA | V _{CC} = MAX, Outputs Open
Inputs Grounded and Chip Selected | | | co | Output Capacitance | | 7 | | pF | V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz | | | CIN | Input Capacitance | | 4 | | pF | V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz | | | v _c | Input Clamp Diode Voltage | | | -1.2 | V | V _{CC} = MIN, I _Δ = -18 mA | | | SYMBOL | CHARACTERISTIC | LIMITS | | | | | |--------------------------------------|-------------------------------|--------|-----------------|----------|----------|------------------------------------| | | | MIN | TYP
(Note 1) | MAX | UNITS | CONDITIONS | | ^t AA-
^t AA+ | Address to Output Access Time | | 35
35 | 55
55 | ns
ns | See Waveforms
and Test Circuits | | tACS- | Chip Select Access Time | | 15
15 | 25
25 | ns
ns | | AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0 \text{ V} \pm 10\%$ | SYMBOL | CHARACTERISTIC | LIMITS | | | | | | |--|-------------------------------|--------|-----------------|----------|----------|-------------------|--| | | | MIN | TYP
(Note 1) | MAX | UNITS | CONDITIONS | | | ************************************** | Address to Output Access Time | | 35
35 | 70
70 | ns
ns | See Waveforms | | | tACS- | Chip Select Access Time | | 15
15 | 30
30 | ns
ns | and Test Circuits | | Note (1): Typical values are at $V_{CC} = 5.0 \text{ V}$, 5.0 V, $+25^{\circ}\text{C}$ and max loading. ### SWITCHING WAVEFORMS ## SWITCHING TEST OUTPUT LOAD 15 mA Load Fig. 1