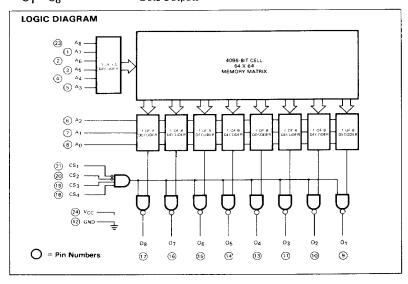
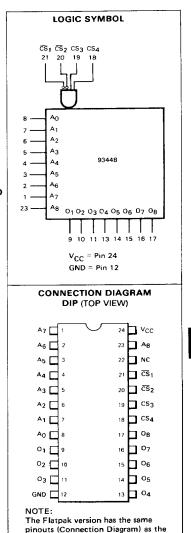
93448 VISOPLANAR SCHOTTKY TTL MEMORY 512×8-BIT PROGRAMMABLE READ ONLY MEMORY

0/077/


DESCRIPTION – The 93448 is a fully decoded 4096-bit field Programmable ROM organized 512 words by eight bits per word. The 93448 has 3-state outputs. The device is enabled when $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are LOW and CS₃ and CS₄ are HIGH. The 93448 is supplied with all bits stored as logic "1"s and may be programmed to logic "0"s by following the field programming procedure.


- FULL MIL AND COMMERCIAL RANGES
- FIELD PROGRAMMABLE
- ORGANIZATION 512 WORDS X 8 BITS
- 3-STATE OUTPUTS
- FULLY DECODED ON-CHIP ADDRESS DECODER AND BUFFER
- CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- WIRED-OR CAPABILITY
- STANDARD 24-PIN DUAL IN-LINE PACKAGE
- NICHROME FUSE LINKS FOR HIGH RELIABILITY
- REPLACES TWO 256 X 8 PROMs DOUBLE DENSITY WITH SAME SPACE AND POWER

PIN NAMES

 $\frac{A_0 - A_8}{CS_1, CS_2, CS_3, CS_4}$ $O_1 - O_8$

Address Inputs Chip Select Inputs Data Outputs

Dual In-Line Package.

7-135

FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY • 93448

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Temperature (Ambient) Under Bias
V_{CC}
Input Voltage
Current into Output Terminal
Output Voltages

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to 4.0 V

GUARANTEED OPERATING RANGES

PART NUMBERS	s	AMBIENT		
TANT NOWIBERS	MIN	TYP	MAX	TEMPERATURE
93448XC-	4.75 V	5.0 V	5.25 V	0°C to +75°C
93448XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

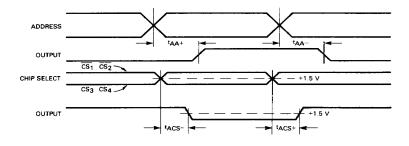
FUNCTIONAL DESCRIPTION — The 93448 is a bipolar field Programmable Read Only Memory (PROM) organized 512 words by eight bits per word. The 93448 has 3-state outputs which provide active <u>pull-ups</u> when enabled and high output impedance when disabled. Chip Select for both devices follows the logic equation: $\overline{\text{CS}}_1 \bullet \overline{\text{CS}}_2 \bullet \text{CS}_3 \bullet \text{CS}_4 = \text{CS}$; i.e., if $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are both active LOW and $\overline{\text{CS}}_3$ and $\overline{\text{CS}}_4$ are both active HIGH, all eight outputs are enabled; for any other condition all eight outputs are disabled.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_0 through A_8 inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds.

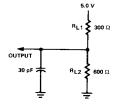
Programming (selectively opening nichrome fuse links) is accomplished by following the procedures in Chapter 6, page 6-14.

DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise note.

		LIMITS					
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS	
v _{OL}	Output LOW Voltage		0.30	0.45	V	V _{CC} = MIN, I _{OL} = 16 mA A ₀ = +10.8 V, A ₁ - A ₈ = HIGH	
v _{OH}	Output HIGH Voltage	2.4			V	V _{CC} = MIN, I _{OH} = -2.0 mA	
l _{off}	Output Leakage Current for HIGH Impedance State			50 -50	μΑ μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V 0°C to +75°C	
l _{off}	Output Leakage Current for HIGH Impedance State			100 -50	μΑ μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V -55°C to +125°C	
v_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Input	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
lF	Input LOW Current IFA (Address Inputs) IFCS (Chip Select Inputs)		-160 -160	-250 -250	μA μA	V _{CC} = MAX, V _F = 0.45 V	
I _R	Input HIGH Current IRA (Address Inputs) IRCS (Chip Select Input)			40 40	μA μA	V _{CC} = MAX, V _R = 2.4 V	
lcc	Power Supply Current		130	175	mA	V _{CC} = MAX, Outputs Open Inputs Grounded and Chip Selected	
co	Output Capacitance		7		pF	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz	
CIN	Input Capacitance		4		pF	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz	
v _c	Input Clamp Diode Voltage			-1.2	V	V _{CC} = MIN, I _Δ = -18 mA	


SYMBOL	CHARACTERISTIC	LIMITS				
		MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
^t AA- ^t AA+	Address to Output Access Time		35 35	55 55	ns ns	See Waveforms and Test Circuits
tACS-	Chip Select Access Time		15 15	25 25	ns ns	

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0 \text{ V} \pm 10\%$


SYMBOL	CHARACTERISTIC	LIMITS					
		MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS	
**************************************	Address to Output Access Time		35 35	70 70	ns ns	See Waveforms	
tACS-	Chip Select Access Time		15 15	30 30	ns ns	and Test Circuits	

Note (1): Typical values are at $V_{CC} = 5.0 \text{ V}$, 5.0 V, $+25^{\circ}\text{C}$ and max loading.

SWITCHING WAVEFORMS

SWITCHING TEST OUTPUT LOAD

15 mA Load

Fig. 1