
- Single +5-V Supply (±10% Tolerance)
- High Density 300-mil (7.62 mm) 18-Pin Package
- Fully Static Operation (No Clocks, No Refresh, No Timing Strobe)
- 4 Performance Ranges:

	ACCESS READ	OR WRITE
	TIME	CYCLE
	(MAX)	(MIN)
TMS4044-12, TMS40L44-12	120 ns	120 ns
TMS4044-20, TMS40L44-20	200 ns	200 ns
TMS4044-25, TMS40L44-25	250 ns	250 ns
TMS4044-45, TMS40L44-45	450 ns	450 ns

- 400-mV Guaranteed DC Noise Immunity with Standard TTL Loads — No Pull-Up Resistors Required
- Common I/O Capability
- 3-State Outputs and Chip Select Control for OR-Tie Capability
- Fan-Out to 2 Series 74, 1 Series 74S, or 8 Series 74LS TTL Loads
- Low Power Dissipation

	MAX	MAX
	(OPERATING)	(STANDBY)
TMS4044	303 mW	84 mW
TMS40L44	220 mW	60 mW

TMS4044/TMS40L44 . . . NL PACKAGE (TOP VIEW)

PIN NOMENCLATURE						
A0 - A11	Addresses					
D Data In						
Q Data Out						
ŝ	Chip Select					
Vcc	+5-V Supply					
VSS Ground						
Write Enable						

description

This series of static random-access memories is organized as 4096 words of 1 bit. Static design results in reduced overhead costs by elimination of refresh-clocking circuitry and by simplification of timing requirements. Because this series is fully static, chip select may be tied low to further simplify system timing. Output data is always available during a read cycle.

All inputs and outputs are fully compatible with Series 74, 74S or 74LS TTL. No pull-up resistors are required. This 4K Static RAM series is manufactured using Tl's reliable N-channel silicon-gate technology to optimize the cost/performance relationship. All versions are characterized to retain data at $V_{CC} = 2.4 \text{ V}$ to reduce power dissipation.

The TMS4044/40L44 series is offered in the 18-pin dual-in-line plastic (NL suffix) packages designed for insertion in mounting-hole rows on 300-mil (7.62 mm) centers. The series is guaranteed for operation from 0°C to 70°C.

Copyright © 1982 by Texas Instruments Incorporated

Texas Instruments

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

8-19

Static RAM and Memory Support Devices

operation

addresses (A0-A11)

The twelve address inputs select one of the 4096 storage locations in the RAM. The address inputs must be stable for the duration of a write cycle. The address inputs can be driven directly from standard Series 54/74 TTL with no external pull-up resistors.

chip select (S)

The chip-select terminal, which can be driven directly from standard TTL circuits, affects the data-in and data-out terminals. When chip select is at a logic low level, both terminals are enabled. When chip select is high, data-in is inhibited and data-out is in the floating or high-impedance state.

write enable (W)

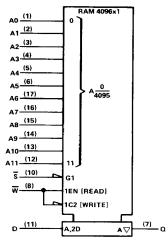
The read or write mode is selected through the write enable terminal. A logic high selects the read mode; a logic low selects the write mode. \overline{W} must be high when changing addresses to prevent erroneously writing data into a memory location. The \overline{W} input can be driven directly from standard TTL circuits.

data-in (D)

Data can be written into a selected device when the write enable input is low. The data-in terminal can be driven directly from standard TTL circuits.

data-out (Q)

The three-state output buffer provides direct TTL compatibility with a fan-out of two Series 74 TTL gates, one Series 74S TTL gate, or eight Series 74LS TTL gates. The output is in the high-impedance state when chip select (\overline{S}) is high or whenever a write operation is being performed, facilitating device operation in common I/O systems. Data-out is the same polarity as data-in.


standby operation

The standby mode, which will retain data while reducing power consumption, is attained by reducing the V_{CC} supply from 5 volts to 2.4 volts. When reducing supply voltage during the standby mode, \overline{S} and \overline{W} must be high to retain data. The V_{CC} transition rate should not exceed 26 mV/ms. During standby operation, data can not be read or written into the memory. When resuming normal operation, five cycle times must be allowed after normal supplies are returned for the memory to resume steady state operation conditions.

ö

184

logic symbol†

FUNCTION TABLE

INPU	TS	OUTPUT	
Ī	W	Q	MODE
Н	X	HI-Z	DEVICE DISABLED
L	L	HI-Z	WRITE
L	Н	DATA OUT	READ

[†]This symbol is in accordance with IEEE Std 91/ANSI Y32.14 and recent decisions by IEEE and IEC. See explanation on page 10-1.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) †

Supply voltage, VCC (see Note 1)	0.5 V to 7 V
Input voltage (any input) (see Note 1)	-1 V to 7 V
Continuous power dissipation	1 W
Operating free-air temperature range	0°C to 70°C
Storage temperature range	°C to 150°C

NOTE 1: Voltage values are with respect to the ground terminal.

recommended operating conditions

84

	PARAMETER		MIN	NOM MAX	UNIT
	TMS4044-12	Operating	4.5	5 5.5	
	TMS40L44-12	Standby	2.4	5.5	1
	TMS4044-20	Operating	4.5	5.5	\ \
0 1 10 10	TMS40L44-20	Standby	2.4	5.5	
TMS40 TMS40	TMS4044-25	On another	4.5 2.4		
	TMS40L44-25	Operating		5.5	
	TMS40L44-45	Standby		5.5	
	TMS4044-45	Operating	4.5	5.5	1
Supply voltage, VSS				0	V
High-level input voltage, VIH			2	5.5	V
Low-level input voltage, VIL (see Note 2)			-1	0.8	V
Operating free-air temperature	TA		0	70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

Texas Instruments

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Static RAM and Memory Support Devices

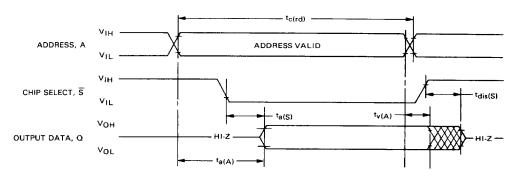
electrical characteristics over recommended operating free-air temperature ranges (unless otherwise noted)

	PARAMETER	TEST	TEST CONDITIONS					UNIT
VoH	High-level output voltage	i _{OH} = -1.0 mA	Vcc = 4.5 V	MIN 2.4	TYP	MAX	V	
VOL	Low-level output voltage	I _{OL} = 3.2 mA	V _{CC} = 4.5 V				0.4	l v
l _l	Input current	V _I = 0 V to 5.5 V			 			
loz	Off-state output current	Sat 2 V or Wat 0.8 V	V _O = 0 V to 5.1	5 V			± 10	μA μA
			TMS40L44	V _{CC} =MAX		25	10 ±10 5 40 5 25 0 55 5 35	
			1101340144	V _{CC} = 2.4 V		15	25	İ
lcc	las Complex of M	IO≖0 mA	TMS4044-12	V _{CC} =MAX		50	55	
·CC	Supply current from V _{CC}	T _A = 0 °C (worst case)	TMS4044-20 TMS4044-25	V _{CC} =2.4 V		25	35	mA
			TMS4044-45	V _{CC} = MAX		50	55	l I
Ci	Input capacitance	V ₁ = 0 V,						
-1	por dapacitance	f = 1 MHz			ĺ		8	рF
c _o	Output capacitance	V _O = 0 V, f = 1 MHz					8	pF

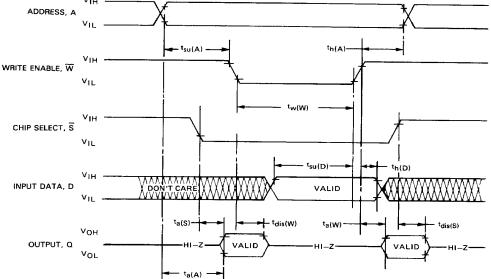
 $^{^{\}dagger}All$ typical values are at $V_{CC}\!=\!5$ V, $T_{A}\!=\!25\,^{o}C.$

timing requirements over recommended supply voltage range, T_A = 0 °C to 70 °C, 1 Series 74 TTL load, C_L = 100 pF

	PARAMETER	TMS4044-12 TMS40L44-12		TMS4044-20 TMS40L44-20						UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	1
tc(rd)	Read cycle time	120		200		250		450		ns
t _{c(wr)}	Write cycle time	120		200		250		450		ns
tv(W)	Address valid to end of write	110		180		230		230		пѕ
tw(W)	Write pulse width	60		60		75		200		ns
t _{su(A)}	Address set up time	0		0		0		0		ns
t _{su(S)}	Chip select set up time	60		60		75		200		-
t _{su(D)}	Data set up time	50		60		75		200		ns
th(D)	Data hold time	- 0		0		0		200		ns
th(A)	Address hold time	- + 0		0				0		ns


8

switching characteristics over recommended voltage range, $T_A = 0$ °C to 70 °C, 1 Series 74 TTL load, $C_L = 100$ pF


PARAMETER		TMS4044-12 TMS40L44-12		TMS4044-20 TMS40L44-20				TMS4044-45 TMS40L44-45		UNIT
	·	MIN	MAX	MIN	MAX	MIN	MAX	MiN	MAX	
ta(A)	Access time from address		120	1	200		250		450	ns
ta(S)	Access time from chip select low		70		70		100		100	ns
t _a (W)	Access time from write enable high		70		70		100	1	100	ns
t _V (A)	Output data valid after address change	20		20		20		20	•	ns
t _{dis(S)}	Output disable time after chip select high		50		60	1	60		80	ns
tdis(W)	Output disable time after write enable low		50		60		60		80	ns

read cycle timing (see Note 3)

34

All timing reference points are 0.8 V and 2.0 V on inputs and 0.6 V and 2.2 V on outputs (90% points). Input rise and fall times = 10 ns. NOTE 3. Write enable is high for a read cycle.

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

8-24

TEXAS INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265